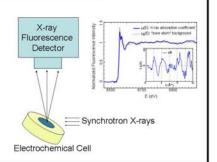
X-ray Fluorescence Studies of Electrochemical Systems

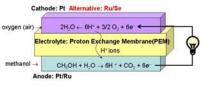
K.-C. Changa, A. Menzela, V. Komanickya, H. Youa,

B. Yildizb, D. J. Meyerc, J. D. Carterc, J. Inukaid and A. Wieckowskid


^aMaterials Science, ^bNuclear Engineering, ^cChemical Science Divisions, Argonne National Laboratory d Department of Chemistry, University of Illinois at Urbana-Champaign

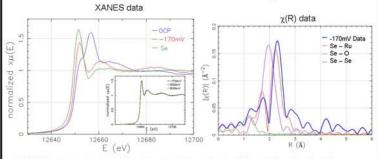
Motivation

- X-ray Absorption Fine Structure (XAFS) contains information on the adsorbing element's local coordination and its chemical state.
- X-ray measurements are ideal for investigating electrodes in environments similar to actual operating electrochemical devices.

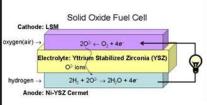

In situ Fluorescence XAFS

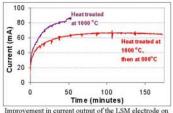
X-ray energy is scanned across the absorption edge of the element of interest. This is done on a sample electrode in an electrochemical cell under potential control.

Ru nanoparticles modified with Se


 Direct Methanol Fuel Cells (DMFC) have an issue of methanol cross over.

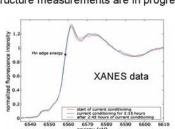
- Ru/Se is an alternative cathode catalyst which has high catalytic activity for oxygen reduction while being inactive to methanol oxidation.
- The stability of new catalyst made by chemically modifying Ru nanoparticles with Se was investigated.

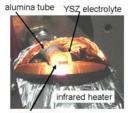

Ru/Se catalyst was bonded on a carbon pellet with Nafion and immersed in 0.1M H2SO4. XAFS data were taken at different potentials at the Se K edge.



- XANES data at open circuit potential and at -170 mV (vs Ag/AgCl) are markedly different, indicating that Se on the catalyst becomes reduced.
- The XANES does not change up to 0.6V which implies that Se is stable on the catalyst particles in this potential range.
- Predominantly Se-Ru bonds suggesting an electronic effect in operation.

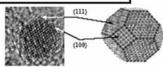
High Temperature Solid Oxide Fuel Cell

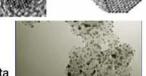

- •High temperature Solid Oxide Fuel Cells (SOFC) enable highly efficient conversion of chemical energy into electrical energy. The performance of the La_{0.8}Sr_{0.2}MnO₃(LSM) cathode shows long term improvement by *current conditioning*.
- •Goal: find the mechanism behind this phenomenon



 No change in XANES of the Mn K edge during current conditioning

- •Mn oxidation state change is ruled out as a cause of activation
- Structure measurements are in progress.




LSM electrode

Cell for in situ x-ray investigation of SOFC cathodes under electrochemical control at temperature of up to ~1000°C

CO on Pt nanoparticles

- •XAFS is well suited for obtaining fundamental scientific data on real commercial catalysts.
- •We have investigated the CO oxidation of Pt catalysts manufactured by E-TEK inc.

Difference XANES data

Ar saturated solution

CO saturated solution

One of the satur

Our measurements demonstrated the sensitivity of our techniques to the <u>buried interfaces</u> of nanoparticles and their oxidation states. We will study nanoparticle electrocatalysts important to various fuel cells, in situ under respective operating conditions using advanced x-ray fluorescence techniques.

K.C. Chang, A. Menzel, V. Komanicky, J. Inukai, A. Wieckowski, Y. Tolmachev, and H. You, a review chapter to "In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis", ed. S. Sun, P.A. Christensen, A. Wieckowski, Elsevier, 2006 in press.

